
Movement Analysis Services
What is movement analysis?
Movement analysis is facilitated by the acquisition of objective data that describes a subject’s movement and a physical examination and relevant medical history. Any movement can be studied but the most common clinical analysis is of walking.
Walking involves complex neurological control of limb movements. People with walking difficulties often have different ways of coordinating their movements and adapting to their walking limitations. Clinical gait analysis is used to help understand pathology that affects gait.
Pathologies studied by clinical gait analysis include cerebral palsy, spina bifida, talipes, stroke and amputees. The resulting information can assist clinicians in making decisions about the patient’s management.
Research into human movement is greatly enhanced by the use of an objective tool such as movement analysis, allowing repeated assessment under different conditions. It encompasses many areas including fundamental studies of muscle activity and function, as well as more applied areas such as rehabilitation, development of prostheses and ergonomics. Sports and exercise science is another major area with studies of human movement in athletics, golf and other activities.
Types of Body Movements
Human movements are complex. In order to describe movements, we typically break down the movement and describe what is occurring at every joint. At each joint, we can break down the movement into three planes. Planes describe the direction of the movement. The sagittal plane lies vertically and divides the body into right and left parts. Forward and backward movements fall into this plane (flexion, extension). The frontal plane also lies vertically but divides the body into anterior and posterior parts. Lateral movements that involve the limbs moving away and towards the body fall under this plane (adduction, abduction). The transverse plane lies horizontally and divides the body into superior and inferior. Rotations and twisting motions fall under this plane (internal rotation, external rotation).
An axis is a straight line around which a limb rotates. Movement at a joint takes place in a plane about an axis. There are three axes of rotation that correspond to each of the three planes:
- Sagittal plane: medio-lateral axis
- Frontal plane: anteroposterior axis
- Transverse plane: longitudinal axis
There is a tendency when describing a movement to refer it to the particular plane that it is dominated by. For example, running is often considered to be a movement in the sagittal plane. In reality, all movements involve movements in more than one dimension.
Movement types are generally paired, with one being the opposite of the other. Body movements are always described in relation to the anatomical position of the body: upright stance, with upper limbs to the side of body and palms facing forward.
Movements of the Body 1
Synovial joints give the body many ways in which to move. (a)–(b) Flexion and extension motions are in the sagittal (anterior–posterior) plane of motion. These movements take place at the shoulder, hip, elbow, knee, wrist, metacarpophalangeal, metatarsophalangeal, and interphalangeal joints. (c)–(d) Anterior bending of the head or vertebral column is flexion, while any posterior-going movement is extension. (e) Abduction and adduction are motions of the limbs, hand, fingers, or toes in the coronal (medial–lateral) plane of movement. Moving the limb or hand laterally away from the body, or spreading the fingers or toes, is abduction. Adduction brings the limb or hand toward or across the midline of the body, or brings the fingers or toes together. Circumduction is the movement of the limb, hand, or fingers in a circular pattern, using the sequential combination of flexion, adduction, extension, and abduction motions. Adduction/abduction and circumduction take place at the shoulder, hip, wrist, metacarpophalangeal, and metatarsophalangeal joints. (f) Turning of the head side to side or twisting of the body is rotation. Medial and lateral rotation of the upper limb at the shoulder or lower limb at the hip involves turning the anterior surface of the limb toward the midline of the body (medial or internal rotation) or away from the midline (lateral or external rotation).
Movements of the Body 2
Supination of the forearm turns the hand to the palm forward position in which the radius and ulna are parallel, while forearm pronation turns the hand to the palm backward position in which the radius crosses over the ulna to form an “X.” (h) Dorsiflexion of the foot at the ankle joint moves the top of the foot toward the leg, while plantar flexion lifts the heel and points the toes. (i) Eversion of the foot moves the bottom (sole) of the foot away from the midline of the body, while foot inversion faces the sole toward the midline. (j) Protraction of the mandible pushes the chin forward, and retraction pulls the chin back. (k) Depression of the mandible opens the mouth, while elevation closes it. (l) Opposition of the thumb brings the tip of the thumb into contact with the tip of the fingers of the same hand and reposition brings the thumb back next to the index finger.
Movement Review
The variety of movements provided by the different types of synovial joints allows for a large range of body motions and gives you tremendous mobility. These movements allow you to flex or extend your body or limbs, medially rotate and adduct your arms and flex your elbows to hold a heavy object against your chest, raise your arms above your head, rotate or shake your head, and bend to touch the toes (with or without bending your knees).
Each of the different structural types of synovial joints also allow for specific motions. The atlantoaxial pivot joint provides side-to-side rotation of the head, while the proximal radioulnar articulation allows for rotation of the radius during pronation and supination of the forearm. Hinge joints, such as at the knee and elbow, allow only for flexion and extension. Similarly, the hinge joint of the ankle only allows for dorsiflexion and plantar flexion of the foot.
Condyloid and saddle joints are biaxial. These allow for flexion and extension, and abduction and adduction. The sequential combination of flexion, adduction, extension, and abduction produces circumduction. Multiaxial plane joints provide for only small motions, but these can add together over several adjacent joints to produce body movement, such as inversion and eversion of the foot. Similarly, plane joints allow for flexion, extension, and lateral flexion movements of the vertebral column. The multiaxial ball and socket joints allow for flexion-extension, abduction-adduction, and circumduction. In addition, these also allow for medial (internal) and lateral (external) rotation. Ball-and-socket joints have the greatest range of motion of all synovial joints.
Watch this VIDEO to learn about anatomical motions. What motions involve increasing or decreasing the angle of the foot at the ankle?
Dorsiflexion of the foot at the ankle decreases the angle of the ankle joint, while plantar flexion increases the angle of the ankle joint.
Credits
Child Physiotherapy
There are considerable advantages when undergoing paediatric physical therapy that may not only benefit a child physically,...
Read More
Chronic Pain Therapy
Chronic pain is usually defined as pain that persists beyond the normal time that tissues take to heal following an injury....
Read More

